81 research outputs found

    Assessing Music Perception in Young Children: Evidence for and Psychometric Features of the M-Factor

    Get PDF
    Given the relationship between language acquisition and music processing, musical perception (MP) skills have been proposed as a tool for early diagnosis of speech and language difficulties; therefore, a psychometric instrument is needed to assess music perception in children under 10 years of age, a crucial period in neurodevelopment. We created a set of 80 musical stimuli encompassing seven domains of music perception to inform perception of tonal, atonal, and modal stimuli, in a random sample of 1006 children, 6–13 years of age, equally distributed from first to fifth grades, from 14 schools (38% private schools) in So Paulo State. The underlying model was tested using confirmatory factor analysis. A model encompassing seven orthogonal specific domains (contour, loudness, scale, timbre, duration, pitch, and meter) and one general music perception factor, the “m-factor,” showed excellent fit indices. The m-factor, previously hypothesized in the literature but never formally tested, explains 93% of the reliable variance in measurement, while only 3.9% of the reliable variance could be attributed to the multidimensionality caused by the specific domains. The 80 items showed no differential item functioning based on sex, age, or enrolment in public vs. private school, demonstrating the important psychometric feature of invariance. Like Charles Spearman's g-factor of intelligence, the m-factor is robust and reliable. It provides a convenient measure of auditory stimulus apprehension that does not rely on verbal information, offering a new opportunity to probe biological and psychological relationships with music perception phenomena and the etiologies of speech and language disorders

    Structural Brain Correlates of Childhood Inhibited Temperament: An ENIGMA-Anxiety Mega-analysis

    Get PDF
    Temperament involves stable behavioral and emotional tendencies that differ between individuals, which can be first observed in infancy or early childhood and relate to behavior in many contexts and over many years.1 One of the most rigorously characterized temperament classifications relates to the tendency of individuals to avoid the unfamiliar and to withdraw from unfamiliar people, objects, and unexpected events. This temperament is referred to as behavioral inhibition or inhibited temperament (IT).2 IT is a moderately heritable trait1 that can be measured in multiple species.3 In humans, levels of IT can be quantified from the first year of life through direct behavioral observations or reports by caregivers or teachers. Similar approaches as well as self-report questionnaires on current and/or retrospective levels of IT1 can be used later in life

    The posttraumatic stress disorder project in Brazil: neuropsychological, structural and molecular neuroimaging studies in victims of urban violence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Life trauma is highly prevalent in the general population and posttraumatic stress disorder is among the most prevalent psychiatric consequences of trauma exposure. Brazil has a unique environment to conduct translational research about psychological trauma and posttraumatic stress disorder, since urban violence became a Brazilian phenomenon, being particularly related to the rapid population growth of its cities. This research involves three case-control studies: a neuropsychological, a structural neuroimaging and a molecular neuroimaging study, each focusing on different objectives but providing complementary information. First, it aims to examine cognitive functioning of PTSD subjects and its relationships with symptomatology. The second objective is to evaluate neurostructural integrity of orbitofrontal cortex and hippocampus in PTSD subjects. The third aim is to evaluate if patients with PTSD have decreased dopamine transporter density in the basal ganglia as compared to resilient controls subjects. This paper shows the research rationale and design for these three case-control studies.</p> <p>Methods and design</p> <p>Cases and controls will be identified through an epidemiologic survey conducted in the city of São Paulo. Subjects exposed to traumatic life experiences resulting in posttraumatic stress disorder (cases) will be compared to resilient victims of traumatic life experiences without PTSD (controls) aiming to identify biological variables that might protect or predispose to PTSD. In the neuropsychological case-control study, 100 patients with PTSD, will be compared with 100 victims of trauma without posttraumatic stress disorder, age- and sex-matched controls. Similarly, 50 cases and 50 controls will be enrolled for the structural study and 25 cases and 25 controls in the functional neuroimaging study. All individuals from the three studies will complete psychometrics and a structured clinical interview (the Structured Clinical Interview for DSM-IV and the Clinician-Administered PTSD Scale, Beck Anxiety Inventory, Beck Depression Inventory, Global Assessment of Function, The Social Adjustment Scale, Medical Outcomes Study 36-Item Short-Form Health Survey, Early Trauma Inventory, Clinical global Impressions, and Peritraumatic Dissociative Experiences Questionnaire). A broad neuropsychological battery will be administered for all participants of the neuropsychological study. Magnetic resonance scans will be performed to acquire structural neuroimaging data. Single photon emission computerized tomography with [(99m)Tc]-TRODAT-1 brain scans will be performed to evaluate dopamine transporters.</p> <p>Discussion</p> <p>This study protocol will be informative for researchers and clinicians interested in considering, designing and/or conducting translational research in the field of trauma and posttraumatic stress disorder.</p

    Early life stress and macaque annygdala hypertrophy: preliminary evidence for a role for the serotonin transporter gene

    Get PDF
    Background: Children exposed to early life stress (ELS) exhibit enlarged amygdala volume in comparison to controls. the primary goal of this study was to examine amygdala volumes in bonnet macaques subjected to maternal variable foraging demand (VFD) rearing, a well-established model of ELS. Preliminary analyses examined the interaction of ELS and the serotonin transporter gene on amygdala volume. Secondary analyses were conducted to examine the association between amygdala volume and other stress-related variables previously found to distinguish VFD and non-VFD reared animals.Methods: Twelve VFD-reared and nine normally reared monkeys completed MRI scans on a 3T system (mean age = 5.2 years).Results: Left amygdala volume was larger in VFD vs. control macaques. Larger amygdala volume was associated with: high cerebrospinal fluid concentrations of corticotropin releasing-factor (CRF) determined when the animals were in adolescence (mean age = 2.7 years); reduced fractional anisotropy (FA) of the anterior limb of the internal capsule (ALIC) during young adulthood (mean age = 5.2 years) and timid anxiety-like responses to an intruder during full adulthood (mean age = 8.4 years). Right amygdala volume varied inversely with left hippocampal neurogenesis assessed in late adulthood (mean age = 8.7 years). Exploratory analyses also showed a gene-by-environment effect, with VFD-reared macaques with a single short allele of the serotonin transporter gene exhibiting larger amygdala volume compared to VFD-reared subjects with only the long allele and normally reared controls.Conclusion: These data suggest that the left amygdala exhibits hypertrophy after ELS, particularly in association with the serotonin transporter gene, and that amygdala volume variation occurs in concert with other key stress-related behavioral and neurobiological parameters observed across the lifecycle. Future research is required to understand the mechanisms underlying these diverse and persistent changes associated with ELS and amygdala volume.National Institute for Mental HealthNIMHNARSAD Mid-investigator AwardSuny Downstate Med Ctr, Dept Psychiat & Behav Sci, Brooklyn, NY 11203 USAUniversidade Federal de São Paulo, Dept Psiquiatria, São Paulo, BrazilMt Sinai Sch Med, Dept Psychiat, New York, NY USAMt Sinai Sch Med, Dept Neurosci, New York, NY USAMt Sinai Sch Med, Dept Radiol, New York, NY USANew York State Psychiat Inst & Hosp, New York, NY 10032 USAMichael E Debakey VA Med Ctr, Mental Hlth Care Line, Houston, TX USABaylor Coll Med, Menninger Dept Psychiat & Behav Sci, Houston, TX 77030 USAYale Univ, Sch Med, Dept Psychiat, New Haven, CT USANatl Ctr PTSD, Clin Neurosci Div, West Haven, CT USANew York State Psychiat Inst & Hosp, Dept Mol Imaging & Neuropathol, New York, NY 10032 USAColumbia Univ, Coll Phys & Surg, Dept Psychiat, New York, NY USAColumbia Univ, Coll Phys & Surg, Dept Pathol & Cell Biol, New York, NY USAComprehensive NeuroSci Corp, Westchester, NY USAUniv Miami Hlth Sytems, Dept Psychiat & Behav Sci, Miami, FL USAEmory Univ, Sch Med, Dept Psychiat & Behav Sci, Emory, GA USAUniversidade Federal de São Paulo, Dept Psiquiatria, São Paulo, BrazilNational Institute for Mental Health: R01MH65519-01National Institute for Mental Health: R01MH098073NIMH: R21MH066748NIMH: R01MH59990AWeb of Scienc

    Volume of subcortical brain regions in social anxiety disorder:mega-analytic results from 37 samples in the ENIGMA-Anxiety Working Group

    Get PDF
    There is limited convergence in neuroimaging investigations into volumes of subcortical brain regions in social anxiety disorder (SAD). The inconsistent findings may arise from variations in methodological approaches across studies, including sample selection based on age and clinical characteristics. The ENIGMA-Anxiety Working Group initiated a global mega-analysis to determine whether differences in subcortical volumes can be detected in adults and adolescents with SAD relative to healthy controls. Volumetric data from 37 international samples with 1115 SAD patients and 2775 controls were obtained from ENIGMA-standardized protocols for image segmentation and quality assurance. Linear mixed-effects analyses were adjusted for comparisons across seven subcortical regions in each hemisphere using family-wise error (FWE)-correction. Mixed-effects d effect sizes were calculated. In the full sample, SAD patients showed smaller bilateral putamen volume than controls (left: d = −0.077, pFWE = 0.037; right: d = −0.104, pFWE = 0.001), and a significant interaction between SAD and age was found for the left putamen (r = −0.034, pFWE = 0.045). Smaller bilateral putamen volumes (left: d = −0.141, pFWE &lt; 0.001; right: d = −0.158, pFWE &lt; 0.001) and larger bilateral pallidum volumes (left: d = 0.129, pFWE = 0.006; right: d = 0.099, pFWE = 0.046) were detected in adult SAD patients relative to controls, but no volumetric differences were apparent in adolescent SAD patients relative to controls. Comorbid anxiety disorders and age of SAD onset were additional determinants of SAD-related volumetric differences in subcortical regions. To conclude, subtle volumetric alterations in subcortical regions in SAD were detected. Heterogeneity in age and clinical characteristics may partly explain inconsistencies in previous findings. The association between alterations in subcortical volumes and SAD illness progression deserves further investigation, especially from adolescence into adulthood.</p

    Volume of subcortical brain regions in social anxiety disorder:mega-analytic results from 37 samples in the ENIGMA-Anxiety Working Group

    Get PDF
    There is limited convergence in neuroimaging investigations into volumes of subcortical brain regions in social anxiety disorder (SAD). The inconsistent findings may arise from variations in methodological approaches across studies, including sample selection based on age and clinical characteristics. The ENIGMA-Anxiety Working Group initiated a global mega-analysis to determine whether differences in subcortical volumes can be detected in adults and adolescents with SAD relative to healthy controls. Volumetric data from 37 international samples with 1115 SAD patients and 2775 controls were obtained from ENIGMA-standardized protocols for image segmentation and quality assurance. Linear mixed-effects analyses were adjusted for comparisons across seven subcortical regions in each hemisphere using family-wise error (FWE)-correction. Mixed-effects d effect sizes were calculated. In the full sample, SAD patients showed smaller bilateral putamen volume than controls (left: d = −0.077, pFWE = 0.037; right: d = −0.104, pFWE = 0.001), and a significant interaction between SAD and age was found for the left putamen (r = −0.034, pFWE = 0.045). Smaller bilateral putamen volumes (left: d = −0.141, pFWE &lt; 0.001; right: d = −0.158, pFWE &lt; 0.001) and larger bilateral pallidum volumes (left: d = 0.129, pFWE = 0.006; right: d = 0.099, pFWE = 0.046) were detected in adult SAD patients relative to controls, but no volumetric differences were apparent in adolescent SAD patients relative to controls. Comorbid anxiety disorders and age of SAD onset were additional determinants of SAD-related volumetric differences in subcortical regions. To conclude, subtle volumetric alterations in subcortical regions in SAD were detected. Heterogeneity in age and clinical characteristics may partly explain inconsistencies in previous findings. The association between alterations in subcortical volumes and SAD illness progression deserves further investigation, especially from adolescence into adulthood.</p

    Consensus Paper: Radiological Biomarkers of Cerebellar Diseases

    Get PDF
    Hereditary and sporadic cerebellar ataxias represent a vast and still growing group of diseases whose diagnosis and differentiation cannot only rely on clinical evaluation. Brain imaging including magnetic resonance (MR) and nuclear medicine techniques allows for characterization of structural and functional abnormalities underlying symptomatic ataxias. These methods thus constitute a potential source of radiological biomarkers, which could be used to identify these diseases and differentiate subgroups of them, and to assess their severity and their evolution. Such biomarkers mainly comprise qualitative and quantitative data obtained from MR including proton spectroscopy, diffusion imaging, tractography, voxel-based morphometry, functional imaging during task execution or in a resting state, and from SPETC and PET with several radiotracers. In the current article, we aim to illustrate briefly some applications of these neuroimaging tools to evaluation of cerebellar disorders such as inherited cerebellar ataxia, fetal developmental malformations, and immune-mediated cerebellar diseases and of neurodegenerative or early-developing diseases, such as dementia and autism in which cerebellar involvement is an emerging feature. Although these radiological biomarkers appear promising and helpful to better understand ataxia-related anatomical and physiological impairments, to date, very few of them have turned out to be specific for a given ataxia with atrophy of the cerebellar system being the main and the most usual alteration being observed. Consequently, much remains to be done to establish sensitivity, specificity, and reproducibility of available MR and nuclear medicine features as diagnostic, progression and surrogate biomarkers in clinical routine
    corecore